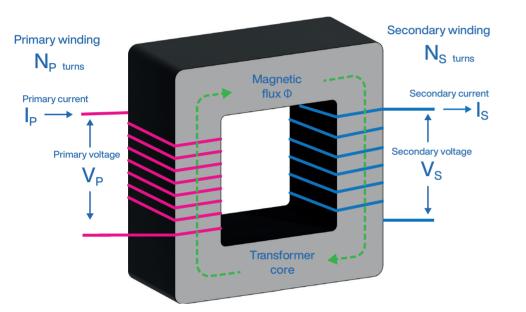
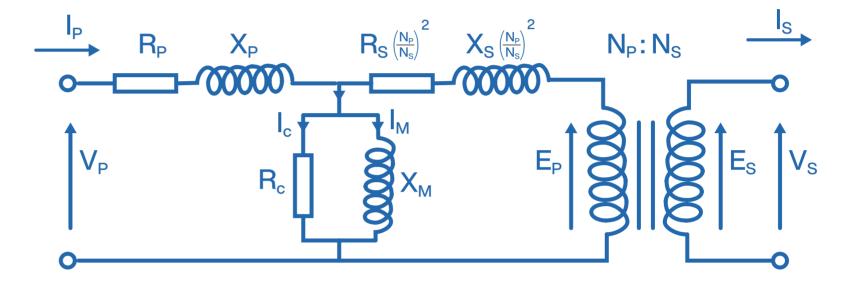

Transformers Reference Guide

Transformers

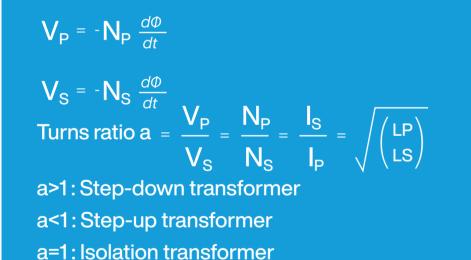
A transformer consists basically of coil windings made of conductive material, surrounding a metal core. A varying current in any one coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force across other coils. Electrical energy can be transferred between separate coils without a conductive connection between the two circuits.


- Are passive components
- Transfer electrical energy between
- electrical circuits (coils)
- Obey Faraday's law of induction


Key

- N_{P} : Number of windings on primary coil
- $\rm N_{s}$: Number of windings on secondary coil
- V_P : Instantaneous Voltage on primary coil (source)
- V_s : Instantaneous Voltage on secondary coil
- I_P : Current on primary coil
- I_s : Current on secondary coil
- Z₁: Load impedance
- Φ : Magnetic Flux through one turn
 - of the winding
- L: Winding self-inductance

Ideal transformer

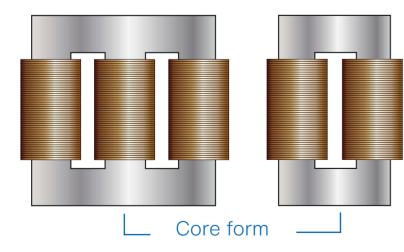


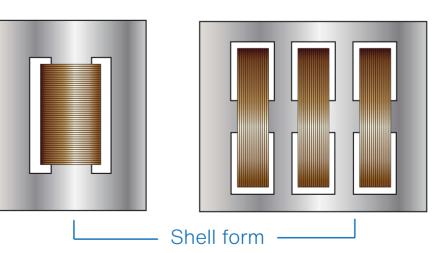
Taking these real-world issues into account, the equivalent circuit looks like this:

Winding joule losses and leakage reactances are approximated by loop impedances R_{p} , R_{s} and X_{p} , X_{s} . Core losses: R_{c} and X_{M} (magnetizing reactance).

Equations

Real-world transformers have to deal with :


Core Losses:


Parasitic Capacitance:

- Nonlinear magnetic effects in the core cause Hysteresis Losses
- Heating of the core causes Eddy Current Losses
- Winding Losses:
- Resistance and inductance in the winding material cause Joule Losses
- Reactive impedance is caused by leakage flux
- Capacitance between adjacent winding layers
- Capacitance between adjacent turns in one winding layer
- Capacitance between Core and adjacent winding layers

Core Constructions

When windings surround the core, the transformer is **core form**; when windings are surrounded by the core, the transformer is **shell form**.

Solid Core - Circuits like switch-mode power supplies that operate above mains frequencies and up to a few tens of kilohertz use powdered iron cores. For higher frequencies, cores made from non-conductive magnetic ceramic materials called ferrites are common.

Toroidal Core - Toroidal transformers are constructed around a ring-shaped core, made from a long strip of silicon steel or permalloy wound into a coil, powdered iron, or ferrite.

Air Core - Used in RF applications, air core transformers are constructed by placing the windings very close to each other. This design eliminates core losses.

Laminated Core - Transformers for use at power or audio frequencies typically have cores made of high permeability silicon steel. The effect of laminations is an enormous reduction of eddy currents.

Transformers protection